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A POSTERIORI ERROR ESTIMATES
FOR UPWIND FINITE VOLUME SCHEMES
FOR NONLINEAR CONSERVATION LAWS

IN MULTI DIMENSIONS

DIETMAR KRONER AND MARIO OHLBERGER

ABSTRACT. In this paper we shall derive a posteriori error estimates in the
L'-norm for upwind finite volume schemes for the discretization of nonlinear
conservation laws on unstructured grids in multi dimensions. This result is
mainly based on some fundamental a priori error estimates published in a
recent paper by C. Chainais-Hillairet. The theoretical results are confirmed
by numerical experiments.

1. INTRODUCTION

One of the most important tools for accelerating comprehensive computations in
multi dimensions (in particular in 3-D) is the local adaption of the grid. In order
to minimize the computing time the local grid size should be chosen such that the
error ||u — uy|| between the exact solution u and the numerical solution wy, is less
than a given tolerance and such that the total number of cells is as small as possible.
This can be obtained if an a posteriori error estimate of the form

1 |l — ual| SCan(hj)+Rh

J

is given, where n;(h;) are local quantities related to the diameter h; of each cell or
edge such that 7;(h;) can be computed if u, is known, and where Ry, is related to
the approximation of the data, with h := max; h;. Also the constant c¢ should be
known. If n;(h;) and Ry, become sufficiently small when h; and h tend to zero, the
right hand side in (1) can be made small by local mesh refinement.

For elliptic and parabolic problems the theory of a posteriori error estimates of
the form (1) is well developed [6], [7], [8], [9], [19]. But up to now there are no
analogous results for initial value problems for nonlinear conservation laws of the
form

(2) dwu+div F(z,t,u) =0 in RN xRT,
(3) u(z,0) = uo(z) in RN,
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Instead of rigorous error estimators, in many applications error indicators, shock
indicators or grid indicators have been used in order to find those regions with
steep gradients. Usually these indicators are based on discrete gradients or higher
order discrete derivatives of the discrete solution. They are used to control the local
process of refining and coarsening the grid. But these indicators give no information
about the true error ||u — upl|.

In this paper we shall exhibit a rigorous a posteriori error estimate of the form
(1) in the L'—norm in space and time. Earlier results related to this topic were
published in [2], [3], [4], [5], [10], [14], [15], [17], [18], [20] for the nonlinear case
and in [9], [13], [14], [16], [19] for linear systems of equations. In Section 2 we
will fix the notation and present the main result. Furthermore we will quote the
fundamental estimates from [1] and put them together in order to derive the main
result. Numerical examples will be given in Section 3.

2. NOTATION AND MAIN RESULT

In this section we will fix the notations and assumptions, define the upwind finite
volume scheme for solving (2) and (3), and present the a posteriori estimate, the
main result of this paper. For the data we have to assume the following conditions:

(4) ug € L®°(RN)N BV,oo(RY) with 4, B € Rsuch that A<wuy<B a.e.,

(5) F e CYRN x RT x R,RY),
(6) Z%(xts)=0 for all (z,t,5) € RY x RT x R.
- ax] 1 by ) by
For all compact sets K C R there exists a constant ¢o(K) such that
(7) 0sF(z,t,8)] < co(K),
(8) |0.0°F(z,t,s)| + |8,0° F(x,t,5)] < co(K)

for almost all (z,t,s) € RYN x RT x K and 8 € {0,1}.

Remark 2.1. Under the above assumptions above the existence of an entropy so-
lution of (2) and (3) is proved in Theorem 5 of [1]. The uniqueness follows from
Theorem 6 of [1].

For t, € R let T = {T;|j € I} be a mesh of R" such that the interfice of two
neighbouring cells T}, T; of 7" is included in a hyperplane (see also [1]). The joint
edge of T; and T; will be denoted by Sj;. Let h; := diam Tj; and hly;, := minjecrn h;.
We assume that A%, > 0 and that there exists an o > 0 such that for all h; > 0
we have
©) ozhév < meas (Tj),
ameas (S;) < h;"‘l
for all n and for all j,I € I". Define hj := max{diam T;,diam T;}, which gives
us the estimate S| < hé\l’—l. Of course T}, Sj;,h; and h; depend on n, but for
simplicity we suppress the index n here.

Remark 2.2. In the situation where At™ = t"*! — ¢" and the 7™ are constant in
time and h; can be replaced by h := max; diam (T}), the condition (9) corresponds
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exactly to condition (5) in [1]. Thus all results of [1] hold in this more restrictive
situation.

Nevertheless we have verified that all results of [1] used in this article to prove
the a posteriori error estimates hold true in the more general situation (9).

For any j,1 € I™ and t, € RT there is a numerical flux g5 R? — R which
satisfies the following conditions for all u,v,u’,v' € [4, B]:

(10) The numerical flux g7;(u,v) is monotone increasing with respect to u
and monotone decreasing with respect to v. '

Furthermore there exists a constant L, independent of j,1,n and h, such that for
all u,v,u’,v’' as above -

(11) g?l(u, U) = —g?j(U,U),
(12) |95 (u,v) — gfy (', v")| < L|Sjul(Ju — /| + [v = "))
and
tn-{—l
(13) g5 (u,u) = Atn/ /S F(z,t,u) nj dzdt,

where At" is the time step, t" := 3. ; At! and nj; is the outer unit normal to Sy
with respect to Tj.
From the assumption (8), (13) we obtain the following fact.

Lemma 2.3. There exists a constant My such that

1
(14) |F(z,t,v)n; — @gg‘l(v,’v)l < My (hj + At™).
Proof. Tt follows from the assumptions (8), (13). d

Remark 2.4. If F(z,t,v) = F(v), then the condition (13) implies that M; =0 and
that the left-hand side in (14) is equal to zero.

Now the upwind finite volume scheme for computing approximate solutions to
(2), (3) is defined by

Definition 2.5 (Finite volume scheme) Let

UJ = IT I / Uug,

“?H = U?_ T 'l Z g51(uf, up’)
T 1en()

for all n € N and j,! € I™. Here N(j) denotes the indices of the neighbouring cells
of Tj.

(15)

For the time step At™ we assume the following CFL-condition for given ¢ € ]0,1[:
(1 - &)a’hy;

min
2L ’
where L is the Lipschitz constant from (12). Let us denote

(17) up(z,t) :=u; if zeTi(=T}), t"<t< L,

(16) At* <
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Lemma 2.6 (L stability). Assume that the assumptions (4),...,(13), (16) are
fulfilled. Then the approzimate solution uy defined in (17) satisfies

A<ui?<B,VneN, Vjel"
and
[fun (™)l Loo@ny < ||uol|peo@ny, ¥V n €N,

Proof. Repeat the proof of Lemma 1 in [1], where the global CFL-condition is
replaced by the local conditions (9) and (16). O

Let u be the exact solution of (2), (3) and uy, be the discrete solution as defined
n (17). In (1], [2], [20], it was shown that in the uniform case (i.e. h; in (9) can be
replaced by h := max; diam(T;)) under the assumptions (4),...,(13), (16) we have
for any compact set K ¢ RY x Rt

(18) /K lu(z,t) — un(z, t)|dedt < chi,

where the constant ¢ depends only on K and the data F,ug, L, co, @ and &.

Now it turns out that the same tools which have been used for proving (18) in
[1] can be used to show an a posteriori estimate. In order to present the details we
have to define the following measures as in [1].

Definition 2.7. (Measures) For ¢ € CJ(RY), ¢ € CI(RN x R*) respectively let

(W) i= [ (o) = un(z, 0] (e,
O 2= 3™ - .

Wi ®) = TS /T [ /S [, o
(19) XP(y + 8(x — ), s+ 0(t — s)) dOdzdtdyds,

059) = R tt// // ot + AEYH(E+0(y ~ €),
T+ 0(s — 7)) ddédrdyds,

<,u‘h7¢> . Ah: +2Z Z Atn +S‘72l)

/ o(z, t)dzdt,

grtt

n  edges
+2M1 Y > (U, ),
n  edges
wheren € N, ), dgesrefers to the sum over all edges of the mesh with neighbouring
triangles T;,T; and
8iv = 202, (951(d: ©) = G5u(d, d)) (k5 6),
(20)

Sh=_ max (g5(d,c) = g(c,0)){uf, ¢)-

u"<c<d< "

Lemma 2.8. Assume (4),...,(13), (16). Let u and up be the exact solution of (2)
and the discrete solution of (15) respectively. Then for all R > 0, T > 0 there exist
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constants Mo, Mz > 0 such that in the case of a uniform mesh (i.e. h; in (9) can
be replaced by h := max; diam(Tj))

pr(BR(0) x [0,T]) < Ma(h + Vh),

(21) 0
r(Br(0)) < Msh
uniformly in h.

Proof. See [1], Theorem 4. O

Also, from Theorem 4 in [1] we obtain

Theorem 2.9. Assume (4),...,(13), (16). Let u and uy, be the exact solution of (2)
and the discrete solution of (15) respectively. Let pp, ul be defined as in Definition
2.7. Then for all k € R and ¢ € CP(RN x RT,RY) we have

/ |up, — k|Oy¢p + (F(z,t, max{up, k}) — F(z,t,min{up, k}))Vodzdt
RN xR+
(22) +/ lug — k|¢(x,0)dx
RN
> - /RNW(IMI + V@) dun — /RN b(x, 0)dud.

Proof. This follows by integration by parts and using the definition of wu, in (17)
and Definition 2.5 (cf. [1], Theorem 4). Note that this part of the proof of Theorem
4 in [1] also holds in the general case of nonuniform grids as described in (9). O

For the following lemma we need
(23) M(R) := the set of positive continuous linear forms on C°(Q).

Lemma 2.10. Assume (4),...,(7), uo € BV(RY), & € LR x Rt),A < 4 <
B a.e., that there exist measures y € M(RY x RY), u® € M(RYN) such that the
statement of Theorem 2.9 holds with 4 instead of up, and that u is the unique
solution of (2), (3).

Let w € RT be given, and let p € C3(RT;[0,1]) be such that p' <0 and

p=1 on [0,R],

(24) p=0 on [R+1,0]
and
o) Wt = T tpe —mol +wt) on R x[0,T],

PY(z,t):=0 on RN x [T, o).
Then we have

|& — ul6p + (F(z,t, max{d,u}) — F(z,t, min{a, u}))Vipdzdt

> —aop®({1(., 0) # 0}) — 2vbeu({w # 0}) — au({y # 0}),

(26) /IRN xR+
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with
a = 2w+—1—+2
T+
ag = 1,
b = 442N+2,
@) o = lullsv (et 3) + 6 +2V4 (4, B))

+[uol|lBv (2" eo([4, B]) + 1)
+2co([A, B]) max{|A|, |B|}(|Br+1(0)| — |Br(0)|)T,

where cq s the constant in (7) and (8).

Proof. See [1], Lemma 8. To get the constants a, ag,b and ¢ one has to repeat the
arguments in [1] and control all constants which appear in the estimates. O

Now we can present the a posteriori error estimate, the main result of this paper.
Let R,w = co([A, B]) (see (7)), and T be given, and let

In: = {nj0<t"< mln{ T},
(28) Dpgry1: = {(x,t)|lx—x0|+wt <R+1},
M(t): = {j| thereexists x€T; suchthat (z,t) € Dri1}.

Theorem 2.11. Assume the conditions are as in Theorem 2.9 and let ug €
BV(RY). Let K cC RY x RT, w = ¢([A, B]) (see (7)) and choose T, R and
o such that T €10, £[ and

(29) Kc |J Browtlzo) x {t}.
0<t<T

Then we have

(30) / lu—up| < T[ao/ lup(z) — up(z,0)|dz + a@ + 2+/bcQ),
K |z—zo|<R+1

where
Q: = Y > jutt —urjarhy
nelp jeM(t™)
+ 22 Z At (A" + h]z) mgc)lcqn(g;‘l(d, c) — g5:(d, d))d3;
n  edges - =77
(31) +2) ) A(AE" + hy) .. n(g]l(d ¢) = gh(c,c))d%,
n  edges
+ 2M1 Y > ARYTHAL™ + by,
n  edges
and
(32) fiio= 0 if (L;UT)x[t",t"" )N Dpy1 =0,

;‘l: = 1 otherwise.
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At

\\\ slope o

- _//Z }/_

FIGURE 1. The relation between w, R, T and K.

X

Proof. By assumption we have

(33) Kc |J Browt(zo) x {t}.
0<t<T

The relation between w, R, T and K is illustrated in Figure 1.
Because of Lemma 2.6 and Theorem 2.9, Lemma 2.10 holds for % := uj. This
means that

/RNmnuh ~uE - 20)
(34) P mase{n, u}) — F(, minfun, u}) Tt

t,:r: To

T
> —aop ({#(., 0) # 0}) — 2Vbepn ({4 # 0})f — apn({¥ # 0}).

Now the terms containing F' can be estimated as follows:

|dzdt

T _ _
F(.,,max{up,u}) — F(., min{up, u}) t T~ %o
|z — wol
(35) < co(Mo)| ma.x{uh,u} mm{uh,u}l |P |
< co(Mo)|un — UI |P | = wlup - UI IP'I-

Therefore we obtain from (34)

(36) T/ | / P(|$ $0| +wt)|u ‘U,hl < ;/RNXm+ p'u_uhl
< aoph ({#(., 0) # 0}) + 2Vbeun({9 # 0})* + apn({¥ #0}),

since (z,t) € K implies that (z,t) € Br_.:(ro) X {t} and p(|z — zo| + wt) = 1.
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Now the theorem follows from the following two lemmata.

Lemma 2.12. Let 1 be defined as in (25). Then

60w s [ [u0(2) = un (2, 0)dz.
|z—zo|<R+1
Proof. We have
(38) pn({1(.,0) # 0}) < pj ({|z — @o| + wt < R+ 1i=0})
and
(39) pwd({lz —zo) < R+1}) = / luo(z) — up(z, 0)|dz.
|z—zo|<R+1

Lemma 2.13. Let 9 be defined as in (25). Then
@A) £ 3 Y - uwrjachl

n€lo jeM(t™)

+ 2) ) AtMA +hy) | max  (ghi(dyc) — gfi(d, )3T,

n edges up <e<d<u}
(40) + 22 ; At (A" + hy1) n<m<d<un(g]l(d ) - gh(c, C))5z
n  edges

+ 2My ) > (AL 4 hy) AR 6T,

n  edges
where &7, is defined in (32).

Proof. The definition of up, is given in Definition 2.7. Let us first consider A, which
is part of up, (see Definition 2.7). Since Dry1 = {(x,t)| |z — zo| + wt < R+ 1}, we
obtain

gl

MG £0D) < mDr) =Y T - /

nelo jeM (™)

<Z z At"‘thu’"+1 u?|.

n€ly je M (t™)

/ XDp,dT dt
(41)

This proves the estimate concerning A,. Now we have to estimate w5, which is also
part of p,. This measure is defined as (see Definition 2.7)
tn+1

059 = g o L, oee

X P(y+60(x—),s+ 0(t — s)) dddzdtdyds.

tn+1
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First we consider the case when Tj x [t",t" "] N Dgyq = 0 and T x [t*,t" 1] N
Dpgy1 = 0. Since (v,s) € Tj x [t",t""![ and (z,t) € Sj x [t",t"F1], for the convex
combination (y+ 8(x —v),s + 6(t — s)) we get
(Y+0(z—7),s+0(t—s)) € Tj x [t",t"+],

and therefore

Yy +0(x—7),s+0(t—s))=0.
Otherwise

[Y(y+0(x—7),s+0(t—s))| <1
Hence, using the definition of 67} in (32), we obtain
(42) (Wi, ¥) < 65 (A" + hyi).

Finally consider the definition of v;; in Definition 2.7. As before, we get

(43) V5, 9) < 67 (AL™ + hyy)*At™ B

Using the estimates (41), (42) and (43) in the definition of up in (19), we obtain

the statement of the lemma. d
Now the proof of Theorem 2.11 follows if we use (37), (40) in (36). O

Corollary 2.14. Under the assumption of Theorem 2.11, and if F(x,t,v) = F(v)
(see Remark 2.4), we have

(44) / lu —up| < T(GO/ |ug(x) — up(x,0)|dz + a@ + 24/bcQ),
K |z—zo|<R+1

where
(45) Q = Z Z At"hé\’]u;”l —uZ|
nely jGM(t")
HALY ST A(AL + Ry T ul — )
n E(ty)

and E(ty) is the set of all edges which lie in M(t™) .

Remark 2.15. In the situation of this corollary we have ||u||pv < ||uo]|BV, so that
the constant c, as defined in (27), can be calculated a priori. In the general case F' =
F(x,t,v) there exist, at least in two space dimensions, constants C, C’' depending
only on F,ug,Q,T and h/At", such that for all compact sets {2 C R?

Ilull v (@xjo,rp < TeTC".

See Lemma 7 of [1] for this result.
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3. NUMERICAL TESTS

In this section we want to confirm the theoretical results of Section 2 by some
numerical tests in two space dimensions. Therefore we first introduce an adaptive
algorithm, which is based on the a posteriori error estimate of Corollary 2.14. In
this adaptive algorithm we can prescribe an error tolerance for the L'- error between
the exact and the numerical solution of the test problem. Due to the theoretical
results of Corollary 2.14 this prescribed error tolerance should be an upper bound
for the actual L'-error, which can be computed in this test examples, where the
exact solutions are known. In the following subsections this behaviour is analyzed
for two test problems.

3.1. An adaptive strategy. For the definition of an adaptive algorithm let us for
simplicity look at the scalar conservation law (2) in the situation, where F(z,¢,v) =
F(v). Due to the estimate of Corollary 2.14 let us first define the following local
estimators:

(0); = / huo(=) — un(z, 0)] de,
T;

r = B -,

o)l = (D + ) by Ju? — .

Additionally we define the following upper bounds for «, 8 € (0,1):

TOI()
By = >0
0 a()TMO ’
. Tol; 9 Tolf
B, = 2t (1-a)?——t\
¢ = {aaT2M"’( ) QT i
Tol Tol?
B. = i — T (1= ——
= = W {ﬂ iLar2s P o her B }

Here ag,a,b,c,T and L are the constants of Corollary 2.14. M", E™ denote the
number of triangles and edges in M (¢"), E(t™) respectively, and Toly, Tol;, Tol, are
the tolerances for the estimators ng,n: and 7n,. Moreover let Toly, Tol;, Tol, be
chosen in such a way that for a prescribed tolerance Tol we have

Tol = Tolg + Tol; + Tol,.
With this definitions we can now state the following corollary.
Corollary 3.1. Let the assumptions of Corollary 2.14 be fulfilled. If in addition
(m0); < Bo, (m)} < Bt and (n2)7; < By for alln € Iy, j € M(t") and all j,1, such

that S;; is an edge of E(t"), then the following estimate holds for any prescribed
tolerance Tol :

/ | — up| < Tol.
K



ERROR ESTIMATES FOR UPWIND FINITE VOLUME SCHEMES 35

Proof. Using the assumptions of the corollary, we get, by Corollary 2.14,

/ lu—up| < T ao/ luo(z) — up(z,0)|dx
K |z—zo|<R+1
+ a( SN ARt -l

n€ly jeM(tn)

+ 4L > AP(AL + hi)hjlu} - um))

n€lg S; €E(t")

+ 2\/%< Yo ) ARt - u

n€lo jeM(t™)

1/2
+ 4L Z Z At™ (A" + hjl)hjl) [uj — u?l)

n€lo S; 1€ B(tm)

§T<a0 ZBo+aZ ZAt"Bt+4LaZ Z At"B,

JEM(0) n€lo jeM(t™) n€lg S;€E(t")

+2vbe [ >0 AtBi+4L Y Y At"BI)

n€ly jEM(tn) n€ly ;€ E(tn)

< Toly + aTol; + BTol, + \/(1 — @)2Tol? + (1 — B)2Tol2
< Tol.

Due to this result the adaptive algorithm reads as follows:

for all n € Iy {
for all j € M(t™) and all Sj; € E(t") {
coarse T; and/or T if (n9); < 6By, (nt);-‘ < 6B; or '(nz);‘l < 0Bg;
refine T; and/or Tj, until (no); < Bo, (m:)} < By and (n2)}; < Ba;
calculate the next time step on the resulting mesh;
}
}

Here 6 is a threshold value, which should be chosen in (0,1) depending on the
refinement rules of the mesh.

Remark 3.2. Let us remark that the conditions (19); < B, (nt);l < B; and (nz);’l <
B, can always be fulfilled, as the estimators converge faster towards zero than the
upper bounds do, when hj, hj; converge to zero.

Furthermore, it is important to state that the time interval At™ is also adapted
in this algorithm, because At™ is directly connected to hApi, through the CFL
condition.

In the following two subsections we now want to verify the statement of Corollary
3.1 for this adaptive algorithm in two test situations, where the exact solution of
the problem is known. Therefore we prescribe an error tolerance Tol and compare
the actual error [} |u — up| to this tolerance.
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3.2. A Burgers type problem. Let us consider the nonlinear conservation law
(2) together with the initial condition (3) in R?, where
2 : 1+
u 2, if BI%2 _05<0,
F(z,t,u) = ( u? ) and "0(””)‘{ 1, if zie fz ~0.5>0.
Then the exact solution of this Burgers type problem is

@p={ % i o053
WHE =1, if miz 05> 3t

macro grid t=0.000 t=0.013 t=0.026

1=0.039 {=0.055 1=0.071 ‘ 1=0.086

FIGURE 2. Macro grid and adaptive grids at different time steps
for the Burgers type problem.

macro grid t=0.000 t=0.013 t=0.026

t=0.039 t=0.055 t=0.071 t=0.086

FIGURE 3. The traveling shock of the Burgers type problem.
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TABLE 1. Comparison between the prescribed tolerance and the
actual error for the Burgers type problem.

TOL 0.024 0.018 0.012 0.008 0.004 0.002 0.001

[lu —uplls || 0.01989 | 0.00975 | 0.00937 | 0.00526 | 0.00147 | 0.00052 | 0.00016

In Figure 2 the adaptive refined grids for different time steps are shown. In this
example the error should be controlled in the set By 1(0.75,0.75). Theorem 2.11
indicates that we have to control the error in the whole cone of dependence. This
means we can choose K as the cone of dependence corresponding to By 1(0.75,0.75).
Due to the choice of the cone K, where the error should be controlled, the grid is
only refined inside the cone. The figure shows how the dependence region concen-
trates to a small disc By 1(0.75,0.75) as ¢ reaches T' = 0.1. Since the last time steps
contribute less to the L'-error over K than the first time steps do, the grid is not
that fine at the end of the calculations. The corresponding shock solution is shown
in Figure 3. Here the grey values indicate the values of the solution uy.

Table 1 shows the prescribed tolerances for different simulations of the Burgers
type problem and the corresponding actual errors between the exact solution and
the discrete solution of the finite volume scheme.

3.3. The rotating cylinder problem. Let us consider the linear conservation
law (2) together with the initial condition (3) in R?, where

—To U 1, if z—(1,0)7] < 0.5,
F(z,t,u) -—:( xfu ) and  wup(x) ={ 0. else. o= (1,0)7]

Then the exact solution of this rotating cylinder problem is
u(z,t) = uo((cos(t)zy + sin(t)zy, —sin(t)x1 + cos(t)zz) ).

The numerical solution of the rotating cylinder problem with the adaptive algo-
rithm is shown in Figure 5, whereas Figure 4 shows the underlying adaptive grid.
The set K is chosen such that KNQ x T = By (—1.0,0.0), where T' = 3.15. Table
2 shows the prescribed tolerances for different simulations of the rotating cylinder
problem and the corresponding actual errors between the exact solution and the
discrete solution of the finite volume scheme.

TABLE 2. Comparison between the prescribed tolerance and the
actual error for the rotating cylinder problem.

TOL 3.0 2.0 1.6 1.2 0.8 0.4 0.2

[lu —wupll1 || 2.28430 | 1.54125 | 1.12592 | 0.878921 | 0.61415 | 0.33538 | 0.17748
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t = 0.000

t=0.429

t=0.903

t=1.305

t=1.773

t=2.230

t=2.725

t=3.150

FIGURE 4. Macro grid and adaptive grids at different time steps

for the rotating cylinder problem.

t=0.000 1= 0.429 1=0.903 t=1.305
1= 1.773 1=2.230 1=2.725 {=3.150

FIGURE 5. The numerical solution of the rotating cylinder prob-

lem.

We would like to thank the referees for suggesting that we should localize con-
dition (6) in [1] and use the weaker condition (9) instead.
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