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A POSTERIORI ERROR ESTIMATES 
FOR UPWIND FINITE VOLUME SCHEMES 
FOR NONLINEAR CONSERVATION LAWS 

IN MULTI DIMENSIONS 

DIETMAR KRONER AND MARIO OHLBERGER 

ABSTRACT. In this paper we shall derive a posteriori error estimates in the 
Ll-norm for upwind finite volume schemes for the discretization of nonlinear 
conservation laws on unstructured grids in multi dimensions. This result is 
mainly based on some fundamental a priori error estimates published in a 
recent paper by C. Chainais-Hillairet. The theoretical results are confirmed 
by numerical experiments. 

1. INTRODUCTION 

One of the most important tools for accelerating comprehensive computations in 
multi dimensions (in particular in 3-D) is the local adaption of the grid. In order 
to minimize the computing time the local grid size should be chosen such that the 
error IU- Uh II between the exact solution u and the numerical solution Uh is less 
than a given tolerance and such that the total number of cells is as small as possible. 
This can be obtained if an a posteriori error estimate of the form 

(1) -IIU-UhI < cEZ qj(hj) +Rh 

is given, where mj (hj) are local quantities related to the diameter hj of each cell or 
edge such that rj (hj) can be computed if Uh is known, and where Rh is related to 
the approximation of the data, with h := maxj hj. Also the constant c should be 
known. If 7j (hj) and Rh become sufficiently small when hj and h tend to zero, the 
right hand side in (1) can be made small by local mesh refinement. 

For elliptic and parabolic problems the theory of a posteriori error estimates of 
the form (1) is well developed [6], [7], [8], [9], [19]. But up to now there are no 
analogous results for initial value problems for nonlinear conservation laws of the 
form 

(2) Atu + div F(x, t, u) = O in IIN x I+, 

(3) u(x, 0) = uo(x) in RN 
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Instead of rigorous error estimators, in many applications error indicators, shock 
indicators or grid indicators have been used in order to find those regions with 
steep gradients. Usually these indicators are based on discrete gradients or higher 
order discrete derivatives of the discrete solution. They are used to control the local 
process of refining and coarsening the grid. But these indicators give no information 
about the true error IU - Uhl. 

In this paper we shall exhibit a rigorous a posteriori error estimate of the form 
(1) in the L1-norm in space and time. Earlier results related to this topic were 
published in [2], [3], [4], [5], [10], [14], [15], [17], [18], [20] for the nonlinear case 
and in [9], [13], [14], [16], [19] for linear systems of equations. In Section 2 we 
will fix the notation and present the main result. Furthermore we will quote the 
fundamental estimates from [1] and put them together in order to derive the main 
result. Numerical examples will be given in Section 3. 

2. NOTATION AND MAIN RESULT 

In this section we will fix the notations and assumptions, define the upwind finite 
volume scheme for solving (2) and (3), and present the a posteriori estimate, the 
main result of this paper. For the data we have to assume the following conditions: 

(4) u0 C L`(RIN) n BVi0,(RIN) with A, B E R such that A < uo < B a.e., 

(5) FE Cl(R N X R+ X> RN) 

(6) Z 0 (x,t,s)=0 forall (x,t,s) E RINXR+xIR. 
i Dxj 

For -all compact sets K C R there exists a constant co (K) such that 

(7) 1 0,F (x, t, s)| < Co (K), 
(8) I0x00F(xt)?s)I? + 0t03F(x,t,s)| < Co(K) 
for almost all (x, t, s) E IR N XR+ x K and C {0, 1}. 

Remark 2.1. Under the above assumptions above the existence of an entropy so- 
lution of (2) and (3) is proved in Theorem 5 of [1]. The uniqueness follows from 
Theorem 6 of [1]. 

For tn C Ill+ let TT j = T3 ] CInJ} be a mesh of RN such that the interface of two 
neighbouring cells Tj, T1 of Tn is included in a hyperplane (see also [1]). The joint 
edge of Tj and T1 will be denoted by Sjl. Let hj := diam Tj and hnm :minjCin hj. 
We assume that h n > 0 and that there exists an a > 0 such that for all hj > 0 
we have 

( ) ~~~~~~OVhj < meas (Tj), 

cemeas (Sjl) < hN1 

for all n and for all j, I C In. Define hjl := maxfdiam Tj, diam T1}, which gives 
us the estimate ISjll < hjNl. Of course Tj, Sl,hj and hjl depend on n, but for 
simplicity we suppress the index n here. 

Remark 2.2. In the situation where Atn = tn+1- t and the Tn are constant in 
time and hj can be replaced by h := maxj diam (Tj), the condition (9) corresponds 
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exactly to condition (5) in [1]. Thus all results of [1] hold in this more restrictive 
situation. 

Nevertheless we have verified that all results of [1] used in this article to prove 
the a posteriori error estimates hold true in the more general situation (9). 

For any j,l cE In and tn C R+ there is a numerical flux g 7 l R2 IR which 
satisfies the following conditions for all u, v, u', v' C [A, B]: 

(10) The numerical flux g1 (U, v) is monotone increasing with respect to u 

and monotone decreasing with respect to v. 

Furthermore there exists a constant L, independent of j, 1, n and h, such that for 
all u,v,u',v' as above 

(11l) 9gj(n, V) =_g (V, U), 

(12) g7(,V) - gjl(u', v')I ? L SjI(lu - u'I + v - v'l) 

and 

(13) 

gn(ulu)= 

t 

1 
F(x, t, 

u) nji dxdt, 

where Att is the time step, t E := 1=U At' and njl is the outer unit normal to Si' 
with respect to T3. 

FRom the assumption (8), (13) we obtain the following fact. 

Lemma 2.3. There exists a constant M1 such that 

(14) IF(x, t, v)nji - 1gj' (v, v) I < Ml (hjl 

Proof. It follows from the assumptions (8), (13). 0 

Remark 2.4. If F(x, t, v) = F(v), then the condition (13) implies that M1 = 0 and 
that the left-hand side in (14) is equal to zero. 

Now the upwind finite volume scheme for computing approximate solutions to 
(2), (3) is defined by 

Definition 2.5 (Finite volume scheme). Let 

O 1 
Ui 

iTi 1T 
(15) un+:= _Atj gn 

i I1CN(j) 

for all n C N and j, l C In. Here N(j) denotes the indices of the neighbouring cells 
of Tj. 

For the time step Atn we assume the following CFL-condition for given C ]0, 1 [: 

(1 - a2h 

(16) Att < 2L m 

where L is the Lipschitz constant from (12). Let us denote 

(17) h(x,t) *= u if x C Tj(= Tn), tn < t < tn+l. 
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Lemma 2.6 (L? stability). Assume that the assumptions (4),...,(13), (16) are 
fulfilled. Then the approximate solution uh defined in (17) satisfies 

A < un <B, VnEC, VjCI , 

and 

IUh(t )IILoo(RN) < U11U011LjO(RN)) V n C N. 

Proof. Repeat the proof of Lemma 1 in [1], where the global CFL-condition is 
replaced by the local conditions (9) and (16). 

Let u be the exact solution of (2), (3) and Uh be the discrete solution as defined 
in (17). In [1], [2], [20], it was shown that in the uniform case (i.e. hj in (9) can be 
replaced by h :- maxj diam(Tj)) under the assumptions (4),...,(13), (16) we have 
for any compact set K C R N X R+ 

(18) I JU(x,t) - Uh(X,t)Idxdt < ch4, 

where the constant c depends only on K and the data F, uo, L, co, a and (. 
Now it turns out that the same tools which have been used for proving (18) in 

[1] can be used to show an a posteriori estimate. In order to present the details we 
have to define the following measures as in [1]. 

Definition 2.7. (Measures) For 0 E CO(IRN), 0q C cO(IRlN x IR+) respectively let 

4Lh, 0) = UO(X) - Uh(X, 0)| q$(x)dx, 
N 

tn+1 

(Ah ) = un+1 _Ujn X A (x, t)dxdt, 
nj 

(ntJI, X) (Z\tn)2TjI IS31! J Jjf j(hil + Atn) 

(19) xq(-y + 0(x - y), s + 0(t - s)) dOdxdtdryds, 
tn+1 tn+1 

(,jl q) = j I f J jJ (hii + Atn)20(c + 0(+_t ) 

'r + 0(s - -r)) dOdTd'-&yds, 

(Ah, (A) =(h, 0/) + 2 E 
E tn(S~jl + S?J) 

n edges 

+21E E (V, j) +2MiZ, u~q) 
n edges 

where n C N, Eedgesrefers to the sum over all edges of the mesh with neighbouring 
triangles Tj, T1 and 

2U max (gn(d,c) -gjl(d,d))(/1-.,q$ )), 

(0 =U max (g9jl (d, c) -g l (C> C)) (_n, l). 

Lemma 2.8. Assume (4),...,(13), (16). Let u and Uh be the exact solution of (2) 
and the discrete solution of (15) respectively. Then for all R > 0, T > 0 there exist 
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constants M2, M3 > 0 such that in the case of a uniform mesh (i.e. hj in (9) can 
be replaced by h maxj diam(Tj)) 

(21) Ih(BR(0) X [0, T]) < M2(h + V), 

,?(BR() < M3h 

uniformly in h. 

Proof. See [1], Theorem 4. 

Also, from Theorem 4 in [1] we obtain 

Theorem 2.9. Assume (4),...,(13), (16). Let u andUh be the exact solution of (2) 
and the discrete solution of (15) respectively. Let 1th, ,uo be defined as in Definition 
2.7. Then for all k C R and X C C(IRN x R+,1R+) we have 

LA Uh- kl&tq + (F(x, t, max{uh, k}) - F(x, t, min{Uh, k}))Vqdxdt 
RN XR+ 

(22) + luo - kj(x, O)dx 
N 

? -j &(0tok + 1Vqd0)dlth - L (X,0)d h. 
N XR2+ N 

Proof. This follows by integration by parts and using the definition of Uh in (17) 
and Definition 2.5 (cf. [1], Theorem 4). Note that this part of the proof of Theorem 
4 in [1] also holds in the general case of nonuniform grids as described in (9). O 

For the following lemma we need 

(23) M(Q) := the set of positive continuous linear forms onC?(Q) 

Lemma 2.10. Assume (4),...,(7), uo C BV(IRN), ii C L??(IR N x IRl+),A < ii < 
B a.e., that there exist measures u C M(RN x R+), po E M(IIRN) such that the 
statement of Theorem 2.9 holds with ii instead of Uh, and that u is the unique 
solution of (2), (3). 

Let w C R+ be given, and let p C Co'(IR+; [0,1]) be such that p' < 0 and 

(24) p=l on [0,R], 
p=O on [R+1,oo] 

and 

(25) ~ V(X (xt) := (j - P(xo I + wt) on RN X [0,T], 

(x, t): =O on RN X [T, ] . 

Then we have 

(26 |LN~?Ii - ujot~b + (F(x, t, max{ii, u}) - F(x, t, min{ii, u}))Vf dxdt 
(>26) }N X -+ 

> - ao ,aO ff - 0) =14 0 2 )-248({f V) O}40 ) 2-a/l ({+ 74' O}), 
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with 

a 2w+-+2, 
T 

aO 1, 

b :=4+2 2N+2 

(27) c IuIIBV(2(2w +-) + (8 2+5)co([A) B])) 
T 

+HUoH |BV(2 Co(EA, B]) + 1) 
+2co([A, B]) max{|AI, |B|}(|BR+1(0)1 - JBR(O) J)T, 

where co is the constant in (7) and (8). 

Proof. See [1], Lemma 8. To get the constants a, ao, b and c one has to repeat the 
arguments in [1] and control all constants which appear in the estimates. O 

Now we can present the a posteriori error estimate, the main result of this paper. 
Let R, w = co([A, B]) (see (7)), and T be given, and let 

Io: = {nIO < tn min{ ,T}, 

(28) DR+1: = {(x, t) I Ix - xo I + wt < R + 1}, 
M(t): = ijI there exists x C Tj such that (X,t) C DR+1}. 

Theorem 2.11. Assume the conditions are as in Theorem 2.9 and let uo C 
BV(RIN). Let K CC RJN x IR, w = co([A,B]) (see (7)) and choose T,R and 
xo such that T c ]O, R[ and 

(29) K c U BR-,t(xO) X {t}- 

O<t<T 

Then we have 

(30) J u-uhi < T[aoj Iuo(x)-uh( O)d+ aQ+2 bcQ] 
K I~~~x-xo I< R+l 

where 

Q = S? S? Iu n+1 -_uIAtn h N 
nCIo jEM(tn) 

+ 25 5? ztT(\tT+ hAt) Atmax (gjnl(d, c)-g 9(d,d)>65l 
n edges 

(31) + 2 E Atn (Atn + hjl) maX (gn(d,c)- gl(c,c)65nl 
n edgesI 

+ 2M1 hjl + hjl 
n edges 

and 

(32) 0 if (Tt UT1) x nt ,tn+11nDR+1 0, 

dn. - 1 otherwise. 



ERROR ESTIMATES FOR UPWIND FINITE VOLUME SCHEMES 31 

t 

'U / 0 p\slope ca 

o/;S~~~~~~~r 

FIGURE 1. The relation between w, R, T and K. 

Proof. By assumption we have 

(33) K c U BRwt(xo) x {t}. 
O<t<T 

The relation between w, R, T and K is illustrated in Figure 1. 
Because of Lemma 2.6 and Theorem 2.9, Lemma 2.10 holds for iu Uh. This 

means that 

LNX U+ - uI(T tfw - 
- 

iN xR+T T 

(34) +(F(., max{uh, u}) - F(., min{uh, u}) )T tp' 
x 

X ]dxdt 

> -a (QIp)(., 0) # 0}) - 2V'4th({ : 0 }) 2 
- aAh({1 # 0}). 

Now the terms containing F can be estimated as follows: 

T-t x-xo 
F(., max{uh, u}) -F(., min{Uh, u}) T P' j - 

(35) < co(Mo)I max{uh, u} - min{uh, u}lI T I 

< Co(Mo)Iuh - T-l IP' = WlUh - Ul T IP'I 

Therefore we obtain from (34) 

-| |u-Uhl = -| X pl-xol + OUt)|-Uhl < -| PI l- Uhl 
(36) TIK TIK TJRN XR+ 

? ao L({o(., 0) # 0}) + 2 /b4th({ ' # 0}) 2 + aIh({/ ) 0$), 

since (x, t) E K implies that (x, t) E BR-wt(xo) x {t} and p(lx - xol + wt) = 1. 
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Now the theorem follows from the following two lemmata. 

Lemma 2.12. Let , be defined as in (25). Then 

(37) Ph({O(.O) # 0}) < f lUO(X) - Uh(X, O)dx. 
Ix-xo I<R+1 

Proof. We have 

(38) 8h(f{b(., O) # O}) < ?i({ ix- xo| + wt < R + 1jt=o}) 

and 

(39) 0f({jx - xol < R + 1}) j=x |Uo(X)-Uh(X,O) . 
Ix-xol|<R+l 

Lemma 2.13. Let , be defined as in (25). Then 

kPh({PO }) S S un+ _ uniAtnhN 
nCIo jEM(t-) 

+ 25 5 Atnh(Atn+ hjl) max (gn, (d, c) - g n,(d, d)) 6nl 
n edges lc<u3 

(40) + 25 E Attn(Atn + hjl) max (gjnl(d,c) - gjnl(c,c)) 6jnl 
n edges 

+ 2M1 E E (Atn + hjl)2AtnhNj1 h ;n 
n edges 

where 6jnl is defined in (32). 

Proof. The definition of ,Uh is given in Definition 2.7. Let us first consider Ah, which 
is part of ,Uh (see Definition 2.7). Since DR+1 = {(x, t)I x - xo + wt < R + 1}, we 
obtain 

tn+l 

Ah({f ?}) < Ah(DR+l)=Z E Uj-Uj|j f XDR+?dxdt 
nCIo jCM(t") t ' 

(41) 

S Z Ath1tnhuNiUn+l _ . 
nCIo jEM(tn) 

This proves the estimate concerning Ah. Now we have to estimate ,uX , which is also 
part of ,Uh. This measure is defined as (see Definition 2.7) 

(8,71o) 
:= 

(Axtn)2lTjI ISji + O( - h, s(hl + O(t-) 

x 0(-y + O(x - ty,s + 0(t - s)) dOdxdtd-yds. 
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First we consider the case when Tj X [tn,tn+l] n DR+1 = 0 and T1 x [tn,tn+l] n 
DR+1 = 0. Since (Cy, s) E Tj X [tn, tn+l [ and (x, t) E Sj x [tn, tn+l [, for the convex 
combination (y + O(x - -y), s + 0(t - s)) we get 

(-y + O(x- y), s + 0(t- s)) E Tj x [tn, tn+1 

and therefore 

b(-y + 0(X - y), s + 0(t - s)) =0. 

Otherwise 

Lk(y+0(x- y),s+0(t- s))l ?1. 

Hence, using the definition of 6jnl in (32), we obtain 

(42) ([Ptj<4) < 6j(Atn + hjl). 

Finally consider the definition of vjl in Definition 2.7. As before, we get 

(43) (">4'ti)) ? 6:^l(A\tT + h j)n2A tA hN-1 

Using the estimates (41), (42) and (43) in the definition of PUh in (19), we obtain 
the statement of the lemma. O 

Now the proof of Theorem 2.11 follows if we use (37), (40) in (36). D 

Corollary 2.14. Under the assumption of Theorem 2. 11, and if F(x, t, v) = F(v) 
(see Remark 2.4), we have 

(44) IK ? UhI < T(ao juo(x) -uh(x,O)|dx+ aQ+2bcQ), 
K I~~~~x-xol<R+l 

where 

(45) Q > tn1hN jn+1 _ Ut I 
nCIo jcM(t-) 

+4L -E E Atn (Atn + hjl) hNl-1 un _ un I 
n E(tn) 

and E(tn) is the set of all edges which lie in M(tn) 

Remark 2.15. In the situation of this corollary we have IIUIIBV < IIUOIIBV, so that 
the constant c, as defined in (27), can be calculated a priori. In the general case F = 
F(x, t, v) there exist, at least in two space dimensions, constants C, C' depending 
only on F, uo, Q, T and h/\Atn, such that for all compact sets Q C 1R2 

)IUHBBV(QX[o,T[) < Te CTf. 

See Lemma 7 of [1] for this result. 
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3. NUMERICAL TESTS 

In this section we want to confirm the theoretical results of Section 2 by some 
numerical tests in two space dimensions. Therefore we first introduce an adaptive 
algorithm, which is based on the a posteriori error estimate of Corollary 2.14. In 
this adaptive algorithm we can prescribe an error tolerance for the L1- error between 
the exact and the numerical solution of the test problem. Due to the theoretical 
results of Corollary 2.14 this prescribed error tolerance should be an upper bound 
for the actual L'-error, which can be computed in this test examples, where the 
exact solutions are known. In the following subsections this behaviour is analyzed 
for two test problems. 

3.1. An adaptive strategy. For the definition of an adaptive algorithm let us for 
simplicity look at the scalar conservation law (2) in the situation, where F(x, t, v) = 

F(v). Due to the estimate of Corollary 2.14 let us first define the following local 
estimators: 

(%o)j= uo(X) -Uh(X,O)I dx, 

(r1t)jn = hj1ujn+l 
- 

01 

(n7x), = (Atn + hjl) hj4 jUn _ un. 

Additionally we define the following upper bounds for a, E3 E (0, 1): 

Tolo 
aoTM' 

Bt =mina Tolt T 
a) 

2 } 
aT2Mn' (1-) 4bcT3MRn 

Bx =min {/4..TE (1-3 6bTE}- 
4LT2n16LbcT3En 

Here ao, a, b, c, T and L are the constants of Corollary 2.14. M,_En denote the 
number of triangles and edges in M(tn), E(tn) respectively, and Tolo, Tolt, Tolx are 
the tolerances for the estimators 71o, nt and 1x. Moreover let Tolo, Tlt, Tolx be 
chosen in such a way that for a prescribed tolerance Tol we have 

Tol = Tolo + Tolt + Tolx. 

With this definitions we can now state the following corollary. 

Corollary 3.1. Let the assumptions of Corollary 2.14 be fulfilled. If in addition 
(71o)j < Bo) (71t)jn < Bt and (m)jl < .Bx for all n E Io, j E M(tT) and all j, 1, such 
that Sjl is an edge of E(tn), then the following estimate holds for any prescribed 
tolerance Tol: 

JK -Uh?<Tol. 
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Proof. Using the assumptions of the corollary, we get, by Corollary 2.14, 

I K Uhl< T ao I uO(x) -uh(x,O)Idx 
K 1~~~~~-Xo|<R+l. 

+ a( S tnhS2lUn+1_uj,l 
nCIo jCM(tI) 

+ 4L Zt (At + hji)hjl jU -Un 

nCIo Sj3CE(tn) 

< T ZAtnBh2 L lUn+- l _tB 
nCIo jCM(tn) 

+ 4L E Atn (itn + hjl)hjl) iu n. _ un 
nC Io Sj C E(tn ) 

<T ao + Bo/+a E AtnBBt +4La E E 
AtnB) 

jcM(V) nCIo jCM(tn) nCIo SjICE(tn) 

+ 24 
V- ,: E: /tnBt + 4L E: E /\tngz) 

nC Io j C M (tn ) nC Io Sj1C E( tn) 

< Tolo + ceTolt + ,3Tolx + 1(1 _ a)2Tolx + (1-f3)2Tol2 

< Tol. 

Due to this result the adaptive algorithm reads as follows: 

for all n E Io { 
for all j E M(tn) and all Sjl E E(tn) { 

coarse Tj and/or T1 if (7r0)j < GBo, (r1t)jn < GBt or (m)< Bx; 
refine Tj and/or Tl, until (iq0)j < Bo, (rnt)jn < Bt and (71r)n < Bx; 
calculate the next time step on the resulting mesh; 

} 
Here 0 is a threshold value, which should be chosen in (0,1) depending on the 

refinement rules of the mesh. 

Remark 3.2. Let us remark that the conditions (710)j < Bo, (71t) < Bt and ( _1X)n < 

Bx can always be fulfilled, as the estimators converge faster towards zero than the 

upper bounds do, when hj, hjl converge to zero. 

F;urthermore, it is important to state that the time interval Atn is also adapted 

in this algorithm, because Atn is directly connected to hmin through the CFL 

condition. 

In the following two subsections we now want to verify the statement of Corollary 

3.1 for this adaptive algorithm in two test situations, where the exact solution of 

the problem is known. Therefore we prescribe an error tolerance Tol and compare 

the actual error fK IU - Uh to this tolerance. 
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3.2. A Burgers type problem. Let us consider the nonlinear conservation law 
(2) together with the initial condition (3) in R2, where 

u 2 2 if ~~~x1+x2 - 05 < 0 
F(x, t, U) =(u2 ) and UO(X){ 2, if _2 

Then the exact solution of this Burgers type problem is 

2, if x+x2 - 05 < 3t, 
1, if xl+x2 - 0.5 > 3t. 

macro grid t 0.013 t 0.026 

t = 0.039 t 0.055 ~~t=0.071 t=0.086 

FIGURE 2. Macro grid and adaptive grids at different time steps 
for the Burgers type problem. 

macrogrid t=0.000 t=0.013 t=0.026 

t= 0.039 t = 0.055 t =0.071 t =0.086 

FIGURE 3. The traveling shock of the Burgers type problem. 
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TABLE 1. Comparison between the prescribed tolerance and the 
actual error for the Burgers type problem. 

TOL 0.024 0.018 0.012 0.008 0.004 0.002 0.001 

H|U -uhh|l 0.01989 0.00975 0.00937 0.00526 0.00147 0.00052 0.00016 

In Figure 2 the adaptive refined grids for different time steps are shown. In this 
example the error should be controlled in the set BO.1(0.75,0.75). Theorem 2.11 
indicates that we have to control the error in the whole cone of dependence. This 
means we can choose K as the cone of dependence corresponding to Bo.1 (0.75, 0.75). 
Due to the choice of the cone K, where the error should be controlled, the grid is 
only refined inside the cone. The figure shows how the dependence region concen- 
trates to a small disc Bo.1(0.75, 0.75) as t reaches T = 0.1. Since the last time steps 
contribute less to the Ll-error over K than the first time steps do, the grid is not 
that fine at the end of the calculations. The corresponding shock solution is shown 
in Figure 3. Here the grey values indicate the values of the solution Uh. 

Table 1 shows the prescribed tolerances for different simulations of the Burgers 
type problem and the corresponding actual errors between the exact solution and 
the discrete solution of the finite volume scheme. 

3.3. The rotating cylinder problem. Let us consider the linear conservation 
law (2) together with the initial condition (3) in ]R2, where 

F(x,t, I' -X2 U an o X 1, if IX _ (1,0)TI <0.5, 
F(x,t,u)= y 2 ) and U X) { 0, else. 

Then the exact solution of this rotating cylinder problem is 

u(x, t) = Uo((cos(t)x1 + sin(t)x2, - sin(t)x1 + cos(t)x2)T). 

The numerical solution of the rotating cylinder problem with the adaptive algo- 
rithm is shown in Figure 5, whereas Figure 4 shows the underlying adaptive grid. 
The set K is chosen such that KnQ x T =Bo.6(-1.0, 0.0), where T =3.15. Table 
2 shows the prescribed tolerances for different simulations of the rotating cylinder 
problem and the corresponding actual errors between the exact solution and the 
discrete solution of the finite volume scheme. 

TABLE 2. Comparison between the prescribed tolerance and the 
actual error for the rotating cylinder problem. 

TOL 3.0 2.0 1.6 1.2 0.8 0.4 0.2 

U HU- uhll1 2.28430 1.54125 1.12592 0.878921 0.61415 0.33538 0.17748 
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t 0.000 ~ t=0.429 t=0.903 t=1.305 

t = 1.773 t =2.230 t =2.725 t =3.150 

FIGURE 4. Macro grid and adaptive grids at different time steps 
for the rotating cylinder problem. 

t 0.000 ~t=0.429 t=0.903 t1.305 

t1.773 t=2.230 t=2.725 t3.150 

FIGURE 5. The numerical solution of the rotating cylinder prob- 
lem. 
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